Wireless Backhaul (*and Access*) at Millimeter Wave Frequencies

David J. Love
Associate Professor
School of Electrical and Computer Engineering
Purdue University
djlove@ecn.purdue.edu

Portions of research supported in part by Nokia Siemens Networks
Need for Small Cells

- Many dire predictions for throughput demand
- Solution higher frequency reuse (Cooper’s law)
- Move users physically closer to an assumed high rate link
- Backhaul arguably the key challenge!
- Will backhaul end up being the bottleneck?
Backhaul in the News

- 2009 - AT&T iPhone troubles:
 “The executive says some Apple staffers fumed last year when AT&T told them of its plans to hype cell tower upgrades without investing in backhaul capacity” – Businessweek, Aug. 23, 2009 (http://www.businessweek.com/technology/content/aug2009/tc20090823_412749.htm)

- Touted backhaul upgrades (e.g., Verizon fiber and wireless, AT&T enhanced backhaul)

- 2011 - Alternative backhaul industry against failed AT&T-T-Mobile deal

- 2012 - Study saying backhaul demand scales 10x by 2016
Flavors of Backhaul

- Wired backhaul still very common (60%-70% copper in US, 40% wired globally)
- Wireless backhaul growing
- Must avoid “usable spectrum” (< 3GHz)
- Future backhaul possibilities
 - Copper/Fiber
 - In-band backhaul
 - 5-38GHz wireless
 - mmWave wireless
 - 100-400 GHz wireless
 - Free space optics

Source: Fibertower SEC filing
Possible Architecture

- Networks of small cells (pico) connected by millimeter wave backhaul (~50 meter links)
- User could access with 4G+ or mmwave radios
- Likely Requirements
 1) Must be easy to install
 2) At least one node per network sees macro (beamforming) or can collaborate (distributed beamforming [Madhow])
 3) Has a backup! (e.g., in-band backhaul)
 4) Nodes could use self-organizing topology [Singh et al]
Two Challenges

- **Challenge 1) Aligning the beam**
 - Narrow beam = Hard to align!
 - Limited resources for alignment

- **Challenge 2) Deployment and mounting**
 - Pole mounting
 - Wind
Challenge 1: Sounding and Beam Alignment

- Beamforming at Tx and Rx is critical!

\[y[k] = z^*Hf_{\text{f}}s[k] + n[k] \]

- Receiver does not have access to each element output

- Observes noisy \(z^*Hf \) not \(Hf \)

- Must sound channel using training sequence to figure out where beams must point
Initial Beam Alignment

- Figure out how to point beam with little initial side info
 - New user, new installation, blockage, etc
 - Assume training sequence

- Must solve
 \[
 \max g(z, f) = |z^*Hf|^2 \quad \text{using observations}
 \]
 \[
 z^*[\ell]Hf[\ell] + n[\ell], \quad \ell = 1, 2, \ldots, L
 \]

- Interesting prior work for indoor millimeter wave (e.g., [Wang et al, Tsang et al])

- Alignment time may be highly constrained in some situations (i.e., \(L\) small)

- Can take \(L\) noisy subspace samples (possibly adaptively) with
 \[
 L \ll MrMt \quad \text{and usually} \quad L = O(Mr + Mt)
 \]
Understanding Beam Alignment

- Possibly many antennas

\[H \in \mathbb{C}^{M_r \times M_t} \]

- Very few dominant paths (usually rank one)

\[\frac{\text{rank}(H)}{\min(M_r, M_t)} \approx 0 \]

- Often

\[z \in \mathcal{A}_r = \{z_1, \ldots, z_{N_r}\}, \quad f \in \mathcal{A}_t = \{f_1, \ldots, f_{N_t}\} \]

- Focus on case when finite beam directions used
Problems to Solve

1) Alignment Given Observations

Given sounding pairs \(\{(z[\ell], f[\ell])\}_{\ell=1}^{L} \) and samples \(\{y[\ell]\}_{\ell=1}^{L} \), how do we choose \((z, f)\) to maximize SNR?

2) Sounding Problem

How do we select sounding beamformer/combiner pair \((z[\ell], f[\ell])\) ?

- Random (non-adaptive) sounding
- Adaptive sounding
Beam alignment typically works by probing the channel with possible pairs \(\{(z, f), z \in A_r, f \in A_t\} \).

Hard alignment: Best alignment chosen simply as max receive power pair

\[
(z, f) = \arg \max (z^*[\ell] H f[\ell] + n[\ell])^2
\]

\((z[\ell], f[\ell]) \)

Has a particularly appealing interpretation with array manifold
Beam Alignment is Related to….

- Problem actually one of rank one approximation
 \[
 \argmax_{z,f} |z^*Hf|^2 = \argmin_{z,f} \min_{\lambda} \|H - \lambda zf^*\|_F
 \]

- Must approximate using i) very few subspace samples and ii) low rank assumption

 \textbf{Matrix Completion}

- Much work in this area (e.g., [Candes, Tao],[Candes,Plan], [Keshavan,Montanari,Oh])

\textit{Matrix completion idea:} Randomly sample entries of a very large dimension rank r matrix. Find rank at most r matrix to minimize some distortion relative to this data
Example of Matrix Completion

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{1,1}$</td>
<td>$h_{1,2}$</td>
<td>$h_{1,3}$</td>
<td>$h_{1,4}$</td>
<td>$h_{1,5}$</td>
<td>$h_{1,6}$</td>
</tr>
<tr>
<td>$h_{2,1}$</td>
<td>$h_{2,2}$</td>
<td>$h_{2,3}$</td>
<td>$h_{2,4}$</td>
<td>$h_{2,5}$</td>
<td>$h_{2,6}$</td>
</tr>
<tr>
<td>$h_{3,1}$</td>
<td>$h_{3,2}$</td>
<td>$h_{3,3}$</td>
<td>$h_{3,4}$</td>
<td>$h_{3,5}$</td>
<td>$h_{3,6}$</td>
</tr>
<tr>
<td>$h_{4,1}$</td>
<td>$h_{4,2}$</td>
<td>$h_{4,3}$</td>
<td>$h_{4,4}$</td>
<td>$h_{4,5}$</td>
<td>$h_{4,6}$</td>
</tr>
<tr>
<td>$h_{5,1}$</td>
<td>$h_{5,2}$</td>
<td>$h_{5,3}$</td>
<td>$h_{5,4}$</td>
<td>$h_{5,5}$</td>
<td>$h_{5,6}$</td>
</tr>
<tr>
<td>$h_{6,1}$</td>
<td>$h_{6,2}$</td>
<td>$h_{6,3}$</td>
<td>$h_{6,4}$</td>
<td>$h_{6,5}$</td>
<td>$h_{6,6}$</td>
</tr>
</tbody>
</table>

- Samples drawn uniformly
- Often important to “spread” samples out
- Use algorithm that creates low rank approximation (e.g., OPTSPACE)
Beam Alignment + Matrix Completion?

- Possibly have subspace side info of channel
 - Array manifold \(A(\theta) \)

- Reconstruction limited to \(z \in A_r, f \in A_t \)

- Can be viewed as direction matrix completion

\[
G = \begin{bmatrix}
 z_1^* \\
 \vdots \\
 z_{N_r}^*
\end{bmatrix} H \begin{bmatrix}
 f_1 \\
 \vdots \\
 f_{N_t}
\end{bmatrix} \quad \text{Find largest entry of } G
\]

- **Soft alignment**: Minimize subspace distance from observed points

\[
\begin{align*}
\argmin_{z,f} \min_{\lambda} & \sum_{\ell=1}^{L} |y[\ell] - \lambda z^*[\ell]z^*f[f][\ell]|^2 \\
= & \argmax_{z,f} \frac{|\sum_{\ell=1}^{L} y^*[\ell]z^*[\ell]z^*f[f][\ell]|}{|z^*[1]z^*f[f][1]|^2 + \cdots + |z^*[L]z^*f[f][L]|^2}
\end{align*}
\]
Topic 2) Adaptive Sounding

- Reciprocity or feedback allows adaptive sounding!

- Can choose pair \((z[\ell], f[\ell])\) prior to sounding

\[
z^*[\ell]Hf[\ell] + n[\ell], \quad \ell = 1, 2, \ldots, L
\]

- Questions:
 - How can Tx help Rx align?
 - How can Rx help Tx align?
 - What role does noise play?
Adaptive Sounding Approach

- Suppose channel rank one and $H = h_1 h_2^*$

- If Tx uses a near optimal beamformer, $|h_2^* f[\ell]|$ large
 Higher SNR Rx observations

- If Rx uses a near optimal combiner, $|z^*[\ell]h_1|$ large
 Higher SNR Tx observations

- Ping-pong alignment
 - Tx sounds its best known direction, Rx aligns
 - Tx sounds various directions, Rx points in best known direction
Hard Decision Alignment

- Works very well with LOS array manifold concepts
- Use progressively narrower beams
- Motivates sub-codebooks
- Important points:
 1) Each path in tree is a direction for further search
 2) Different path sub-codebooks must “overlap”
- Continue to probe area of strongest return
Matrix completion obviously difficult for many matrices.

Incoherence measure [Candès]: Let SVD be $\mathbf{H} = \sum_{k \leq r} \sigma_k \mathbf{u}_k \mathbf{v}_k^*$ we require μ as small as possible with

$$
\|\mathbf{u}_k\|_\infty \leq \sqrt{\mu/M_r}, \quad \|\mathbf{v}_k\|_\infty \leq \sqrt{\mu/M_t}
$$

Intuitively, want singular vectors to be equal gain because we sample with vectors of form $[0 \ldots 0 1 0 \ldots 0]^T$.

Reconstructs to all zero matrix!
Understanding Incoherence

- Matrix completion assumes “peaky” subspace sampling
 \[A_{\text{peaky}} = \{ e_1, \ldots, e_M \} \]
 columns of identity matrix

- Incoherence stipulates that singular vecs are not too distant from vectors in \(A_{\text{peaky}} \)

- Channel Sounding: Singular vectors in array manifold
 Omnidirectional Sounding!

- By-product: Would allow access in crowded user scenarios! (but is it legal????)
Alignment Comparison w/ SNR

- LOS 32x32
- ULA
- AoD and AoA uniform in [-60°, 60°]
- Adaptive soft alignment gives ~1dB improvement
- Random alignment comes at >5db penalty!

Sounding SNR (db)

Beamforming Gain (db)

4096 samples

48 samples
Comparison with WiGig Alignment

- Beamforming Gain
 - TX, RX use ULA ($M_T = M_R = 32$) multi-level codebook with
 - $K = 3$ (three level)
 - $N_B = 4$ (branch expansion)
 - $N_k = 8$ (extended search branches)

 - Carrier frequency : 60 GHz
 - Bandwidth : 400 MHz
 - Rician fading channel with K-factor = 13 dB
 - Modeled with 4 multipaths
Challenge 2: Understanding Pole Movement

- In pole-to-pole backhaul, is beam movement a big problem?
- Pole mounting (Civil engineers!!! AASHTO)
- Sources of movement
 - Ground movement
 - Wind excitation
- Movement types
 - Ground and rotational movement assumed negligible
 - Wind = Gusts + Steady wind
- Do we ever need to adjust beam? What time scale?

Source: American Association of State Highway and Transportation Officials (AASHTO)
Wind Induced Movement

- Cause 1: Mean and Gust-based movement
- Cause 2: Flow of wind over lamppost
 - Vortex shedding
 - Low pressure zones cause movement perpendicular to wind direction
 - Cause constant vibration

Vortex shedding

Constant pole sway

Wind movement

Low pressure zones
Models of Movement

Wind assumed well modeled by a stationary Gaussian process + velocity dependent mean [Davenport]

Davenport filter shapes spectrum (low-pass)

Aero admittance maps velocity perturbation to force
(Recall: Drag force proportional to squared velocity)

\[(\overline{W} + w(t))^2 \approx \overline{W}^2 + 2\overline{W}w(t)\]

Mechanical transfer gives response to force

\[|H_m(\omega)|^2 = \frac{1}{(\omega_n^2 - \omega^2) + (2\zeta\omega_n\omega)^2}\]

Natural frequency
Structural damping ratio
Beam Outage

- Outage Probability

Wind–induced beam outage, moderate turbulence (0.1 intensity)

Percentage of time in outage, P_{out}

mean wind speed, v (m/s)
Role of Tolerable SNR Loss

- Received beam gain faded under SNR_{loss}
 - Antenna Array - $M = 256$ ULA at transmitter / receiver
 - Mean wind-velocity: $\bar{v} = 30 \ [m/s]$ (extreme gust)
Dealing With Wind

- Insight 1: Time scale is slow (order of seconds)
 - Tracking problem will require relatively small feedback overhead
 - Problem will be exacerbated at higher and higher frequencies

- Insight 2: Movement will be easy to track and relatively predictable
 - Simple monopulse tracking
 - Prediction

- Insight 3: Civil engineers can help in designing devices (e.g., damping movement, helping us pick mountings, etc)
mmWave Beamforming Summary

- Economic and technical issues motivate smaller cells
- Backhaul challenges are tremendous
- There is no magic bullet for backhaul!
- Beam alignment critical
- Environmental factors influence beam alignment